Fluoroquinolone is developed expressly for ophthalmic use

Article

Modern fluoroquinolones have evolved over more than 4 decades, from the parent quinolone compound, nalidixic acid (NegGram, Sanofi-Aventis US), patented in 1962. Since then, more than 10,000 derivatives have been patented, all with structural modifications that added features to improve systemic absorption, extend spectrum of action to include Gram-positive microorganisms, and reduce systemic toxicity.

Key Points

Modern fluoroquinolones have evolved over more than 4 decades, from the parent quinolone compound, nalidixic acid (NegGram, Sanofi-Aventis US), patented in 1962. Since then, more than 10,000 derivatives have been patented, all with structural modifications that added features to improve systemic absorption, extend spectrum of action to include Gram-positive microorganisms, and reduce systemic toxicity.

Notably, in 1973 the first fluoroquinolone antibiotics were identified, with the addition of a fluorine atom at position 6. Norfloxacin followed in 1978, ciprofloxacin in 1983, then ofloxacin and its l-isomer levofloxacin, and most recently, moxifloxacin and gatifloxacin, the latter two containing a methoxy group at position 8, which increased potency and activity against atypical microbes and some anaerobes as well.1, 2

'Respiratory fluoroquinolones'

Chlorinated fluoroquinolones

Trends in bacterial susceptibilities in ocular isolates should be closely monitored. Data from sources such as Ocular TRUST3 clearly show a change in susceptibilities of ocular isolates in recent years, with reduced bacterial susceptibility to many familiar fluoroquinolones. Although considered broad-spectrum, it is worthwhile noting that many fluoroquinolones had not shown reliable activity against methicillin-resistant Staphylococcus aureus (MRSA) or against microbes that were classified as fluoroquinolone-resistant. Many bacterial isolates that were considered resistant to ciprofloxacin, including S. aureus and some streptococci, were not likely to be susceptible, even to newer-generation agents.4

In the 1990s, a subgroup of fluoroquinolones was noted to have particularly strong activity against Gram-positive microorganisms and against many resistant strains as well. These were the fluoroquinolones with a halogen atom, either fluorine or chlorine, at the C8 position. The agents were associated with increased potency, lower bacterial minimum inhibitory concentrations, slower development of bacterial resistance mediated by increased DNA gyrase mutations, and increased efficacy against MRSA, methicillin-resistant S. epidermidis, and fluoroquinolone- or ciprofloxacin-resistant strains.

Recent Videos
Katie Rachon, OD, FAAO, Dipl ABO, shares her excitement for the upcoming conference and what it means for an optometrist's toolbox.
EnVision Summit Cochair Cecelia Koetting, OD, FAAO, Dipl ABO, says that attendees should get ready for more discussion-based panels at this year's conference.
From contact lens dropout to addressing diabetic retinopathy in rural communities, optometrists choose an area of eye care research that they would expand, given the appropriate resources.
Bonnie An Henderson in an interview for the EnVision Summit
From new treatments on the horizon for macular degeneration to strengthening comanagement ties, optometrists cite a lot to be excited about in the coming year.
EnVision Summit cofounder and program chair Dr Bonnie Henderson chats about collaborative eye care
Practice owners testify to the importance of trying new things, not being afraid to fail, and utilizing community as a resource when starting up a new practice.
Bonnie An Henderson in an interview for the EnVision Summit
© 2025 MJH Life Sciences

All rights reserved.